Formula Booklet  AASL

Prior Learning

A=bh
A=21(bh)
A=21(a+b)h
A=πr2
C=2πr
V=lwh
V=πr2h
V=Ah
A=2πrh
d=(x1x2)2+(y1y2)2
(2x1+x2,2y1+y2)

Sequences Series

un=u1+(n1)d
Sn=2n(2u1+(n1)d)=2n(u1+un)
un=u1rn−1
Sn=r1u1(rn1)=1ru1(1rn),r=1
FV=PV(1+100kr)kn
S=1ru1,r<1

Exponents & Logs

logab=xax=b, where a,b>0 and a=1
logaxy=logax+logay
logayx=logaxlogay
logaxm=mlogax
logax=logbalogbx

Counting

(a+b)n=an+nC1an−1b++nCranrbr+bn
nCr=r!(nr)!n!

Coordinates & Lines

y=mx+c
ax+by+d=0
yy1=m(xx1)
m=x2x1y2y1

Quadratics

x=2ab
x=2ab±b24ac
Δ=b24ac

Exponents & Logs

ax=exlna
logaax=x=alogax

2&3D Geometry

d=(x2x1)2+(y2y1)2+(z2z1)2
(2x1+x2,2y1+y2,2z1+z2)
V=31Ah
V=31πr2h
A=πrl
V=34πr3
A=4πr2

Trig IDs

sinAa=sinBb=sinCc
c2=a2+b22abcosC
cosC=2aba2+b2c2
A=21absinC
l=rθ
A=21r2θ
tanθ=cosθsinθ
sin2θ+cos2θ=1
sin2θ=2sinθcosθ
cos2θ=cos2θsin2θ=2cos2θ1=12sin2θ

Descriptive Statistics

IQR=Q3Q1
xˉ=ni=1kfixi

Probability

P(A)=n(U)n(A)
P(A)+P(A)=1
P(AB)=P(A)+P(B)P(AB)
P(AB)=0P(AB)=P(A)+P(B)
P(AB)=P(B)P(AB)
P(AB)=P(A)P(B)

Distributions & Vars

E(X)=xP(X=x)
E(X)=np
Var(X)=np(1p)
z=σxμ

Differentiation

f(x)=xnf(x)=nxn−1
f(x)=sinxf(x)=cosx
f(x)=cosxf(x)=sinx
f(x)=exf(x)=ex
f(x)=lnxf(x)=x1
dxdy=dudy×dxdu
y=uvdxdy=udxdv+vdxdu
y=vudxdy=v2vdxduudxdv
a=dtdv=dt2d2s

Integration

xndx=n+1xn+1+C,n=−1
A=abydx
distance =t1t2v(t)dt
displacement =t1t2v(t)dt
x1dx=lnx+C
sinxdx=cosx+C
cosxdx=sinx+C
exdx=ex+C
A=abydx

Prior Learning

A=bh
A=21(bh)
A=21(a+b)h
A=πr2
C=2πr
V=lwh
V=πr2h
V=Ah
A=2πrh
d=(x1x2)2+(y1y2)2
(2x1+x2,2y1+y2)

Sequences Series

un=u1+(n1)d
Sn=2n(2u1+(n1)d)=2n(u1+un)
un=u1rn−1
Sn=r1u1(rn1)=1ru1(1rn),r=1
FV=PV(1+100kr)kn
S=1ru1,r<1

Exponents & Logs

logab=xax=b, where a,b>0 and a=1
logaxy=logax+logay
logayx=logaxlogay
logaxm=mlogax
logax=logbalogbx

Counting

(a+b)n=an+nC1an−1b++nCranrbr+bn
nCr=r!(nr)!n!

Coordinates & Lines

y=mx+c
ax+by+d=0
yy1=m(xx1)
m=x2x1y2y1

Quadratics

x=2ab
x=2ab±b24ac
Δ=b24ac

Exponents & Logs

ax=exlna
logaax=x=alogax

2&3D Geometry

d=(x2x1)2+(y2y1)2+(z2z1)2
(2x1+x2,2y1+y2,2z1+z2)
V=31Ah
V=31πr2h
A=πrl
V=34πr3
A=4πr2

Trig IDs

sinAa=sinBb=sinCc
c2=a2+b22abcosC
cosC=2aba2+b2c2
A=21absinC
l=rθ
A=21r2θ
tanθ=cosθsinθ
sin2θ+cos2θ=1
sin2θ=2sinθcosθ
cos2θ=cos2θsin2θ=2cos2θ1=12sin2θ

Descriptive Statistics

IQR=Q3Q1
xˉ=ni=1kfixi

Probability

P(A)=n(U)n(A)
P(A)+P(A)=1
P(AB)=P(A)+P(B)P(AB)
P(AB)=0P(AB)=P(A)+P(B)
P(AB)=P(B)P(AB)
P(AB)=P(A)P(B)

Distributions & Vars

E(X)=xP(X=x)
E(X)=np
Var(X)=np(1p)
z=σxμ

Differentiation

f(x)=xnf(x)=nxn−1
f(x)=sinxf(x)=cosx
f(x)=cosxf(x)=sinx
f(x)=exf(x)=ex
f(x)=lnxf(x)=x1
dxdy=dudy×dxdu
y=uvdxdy=udxdv+vdxdu
y=vudxdy=v2vdxduudxdv
a=dtdv=dt2d2s

Integration

xndx=n+1xn+1+C,n=−1
A=abydx
distance =t1t2v(t)dt
displacement =t1t2v(t)dt
x1dx=lnx+C
sinxdx=cosx+C
cosxdx=sinx+C
exdx=ex+C
A=abydx