Formula Booklet  AAHL

Prior Learning

A=bh
A=21(bh)
A=21(a+b)h
A=πr2
C=2πr
V=lwh
V=πr2h
V=Ah
A=2πrh
d=(x1x2)2+(y1y2)2
(2x1+x2,2y1+y2)

Sequences Series

un=u1+(n1)d
Sn=2n(2u1+(n1)d)=2n(u1+un)
un=u1rn−1
Sn=r1u1(rn1)=1ru1(1rn),r=1
FV=PV(1+100kr)kn
S=1ru1,r<1

Exponents & Logs

logab=xax=b, where a,b>0 and a=1
logaxy=logax+logay
logayx=logaxlogay
logaxm=mlogax
logax=logbalogbx

Counting

(a+b)n=an+nC1an−1b++nCranrbr+bn
nCr=r!(nr)!n!
nCr=r!(nr)!n!
nPr=(nr)!n!

Complex Numbers

z=a+bi
z=r(cosθ+isinθ)=reiθ=rcisθ
[r(cosθ+isinθ)]n=rn(cosnθ+isinnθ)=rneinθ=rncisnθ

Coordinates & Lines

y=mx+c
ax+by+d=0
yy1=m(xx1)
m=x2x1y2y1

Quadratics

x=2ab
x=2ab±b24ac
Δ=b24ac

Exponents & Logs

ax=exlna
logaax=x=alogax

Polynomials

sum is anan−1; product is (−1)nana0

2&3D Geometry

d=(x2x1)2+(y2y1)2+(z2z1)2
(2x1+x2,2y1+y2,2z1+z2)
V=31Ah
V=31πr2h
A=πrl
V=34πr3
A=4πr2

Trig IDs

sinAa=sinBb=sinCc
c2=a2+b22abcosC
cosC=2aba2+b2c2
A=21absinC
l=rθ
A=21r2θ
tanθ=cosθsinθ
sin2θ+cos2θ=1
sin2θ=2sinθcosθ
cos2θ=cos2θsin2θ=2cos2θ1=12sin2θ
secθ=cosθ1
1+tan2θ=sec2θ
1+cot2θ=cosec2θ
sin(A±B)=sinAcosB±cosAsinB
cos(A±B)=cosAcosBsinAsinB
tan(A±B)=1tanAtanBtanA±tanB
tan2θ=1tan2θ2tanθ

Vectors

v=v12+v22+v32
vw=v1w1+v2w2+v3w3
vw=vwcosθ
cosθ=vwv1w1+v2w2+v3w3
r=a+λb
x=x0+λly=y0+λmz=z0+λn
lxx0=myy0=nzz0
v×w=v2w3v3w2v3w1v1w3v1w2v2w1
v×w=vwsinθ
A=v×w
r=a+λb+μc
rn=an
ax+by+cz=d

Descriptive Statistics

IQR=Q3Q1
xˉ=ni=1kfixi

Probability

P(A)=n(U)n(A)
P(A)+P(A)=1
P(AB)=P(A)+P(B)P(AB)
P(AB)=0P(AB)=P(A)+P(B)
P(AB)=P(B)P(AB)
P(AB)=P(A)P(B)
P(BA)=P(B)P(AB)+P(B)P(AB)P(B)P(AB)
P(BiA)=P(B1)P(AB1)+P(B2)P(AB2)+P(B3)P(AB3)P(Bi)P(ABi)

Distributions & Vars

E(X)=xP(X=x)
E(X)=np
Var(X)=np(1p)
z=σxμ
σ2=ni=1kfi(xiμ)2=ni=1kfixi2μ2
σ=ni=1kfi(xiμ)2
E(aX+b)=aE(X)+b
Var(aX+b)=a2Var(X)
E(X)=−∞xf(x)dx
Var(X)=E(Xμ)2
Var(X)=E(X2)[E(X)]2
Var(X)=(xμ)2P(X=x)
Var(X)=x2P(X=x)μ2
Var(X)=−∞(xμ)2f(x)dx
Var(X)=−∞x2f(x)dxμ2

Differentiation

f(x)=xnf(x)=nxn−1
f(x)=sinxf(x)=cosx
f(x)=cosxf(x)=sinx
f(x)=exf(x)=ex
f(x)=lnxf(x)=x1
dxdy=dudy×dxdu
y=uvdxdy=udxdv+vdxdu
y=vudxdy=v2vdxduudxdv
a=dtdv=dt2d2s
f(x)=h→0lim(hf(x+h)f(x))
f(x)=tanxf(x)=sec2x
f(x)=secxf(x)=secxtanx
f(x)=cosecxf(x)=cosecxcotx
f(x)=cotxf(x)=cosec2x
f(x)=axf(x)=axlna
f(x)=logaxf(x)=xlna1
f(x)=arcsinxf(x)=1x21
f(x)=arccosxf(x)=1x21
f(x)=arctanxf(x)=1+x21

Integration

xndx=n+1xn+1+C,n=−1
A=abydx
distance =t1t2v(t)dt
displacement =t1t2v(t)dt
x1dx=lnx+C
sinxdx=cosx+C
cosxdx=sinx+C
exdx=ex+C
A=abydx
axdx=lnaax+C
a2+x2dx=a1arctan(ax)+C
a2x2dx=arcsin(ax)+C,x<a
udxdvdx=uvvdxdudx or udv=uvvdu
A=abxdy
V=πaby2dx or V=πabx2dy

Differential Equations

yn+1=yn+hf(xn,yn),xn+1=xn+h
μ(x)=eP(x)dx

Maclaurin Series

f(x)=f(0)+xf(0)+2!x2f′′(0)+
ex=1+x+2!x2+
ln(1+x)=x2x2+3x3
sinx=x3!x3+5!x5
cosx=12!x2+4!x4
arctanx=x3x3+5x5

Prior Learning

A=bh
A=21(bh)
A=21(a+b)h
A=πr2
C=2πr
V=lwh
V=πr2h
V=Ah
A=2πrh
d=(x1x2)2+(y1y2)2
(2x1+x2,2y1+y2)

Sequences Series

un=u1+(n1)d
Sn=2n(2u1+(n1)d)=2n(u1+un)
un=u1rn−1
Sn=r1u1(rn1)=1ru1(1rn),r=1
FV=PV(1+100kr)kn
S=1ru1,r<1

Exponents & Logs

logab=xax=b, where a,b>0 and a=1
logaxy=logax+logay
logayx=logaxlogay
logaxm=mlogax
logax=logbalogbx

Counting

(a+b)n=an+nC1an−1b++nCranrbr+bn
nCr=r!(nr)!n!
nCr=r!(nr)!n!
nPr=(nr)!n!

Complex Numbers

z=a+bi
z=r(cosθ+isinθ)=reiθ=rcisθ
[r(cosθ+isinθ)]n=rn(cosnθ+isinnθ)=rneinθ=rncisnθ

Coordinates & Lines

y=mx+c
ax+by+d=0
yy1=m(xx1)
m=x2x1y2y1

Quadratics

x=2ab
x=2ab±b24ac
Δ=b24ac

Exponents & Logs

ax=exlna
logaax=x=alogax

Polynomials

sum is anan−1; product is (−1)nana0

2&3D Geometry

d=(x2x1)2+(y2y1)2+(z2z1)2
(2x1+x2,2y1+y2,2z1+z2)
V=31Ah
V=31πr2h
A=πrl
V=34πr3
A=4πr2

Trig IDs

sinAa=sinBb=sinCc
c2=a2+b22abcosC
cosC=2aba2+b2c2
A=21absinC
l=rθ
A=21r2θ
tanθ=cosθsinθ
sin2θ+cos2θ=1
sin2θ=2sinθcosθ
cos2θ=cos2θsin2θ=2cos2θ1=12sin2θ
secθ=cosθ1
1+tan2θ=sec2θ
1+cot2θ=cosec2θ
sin(A±B)=sinAcosB±cosAsinB
cos(A±B)=cosAcosBsinAsinB
tan(A±B)=1tanAtanBtanA±tanB
tan2θ=1tan2θ2tanθ

Vectors

v=v12+v22+v32
vw=v1w1+v2w2+v3w3
vw=vwcosθ
cosθ=vwv1w1+v2w2+v3w3
r=a+λb
x=x0+λly=y0+λmz=z0+λn
lxx0=myy0=nzz0
v×w=v2w3v3w2v3w1v1w3v1w2v2w1
v×w=vwsinθ
A=v×w
r=a+λb+μc
rn=an
ax+by+cz=d

Descriptive Statistics

IQR=Q3Q1
xˉ=ni=1kfixi

Probability

P(A)=n(U)n(A)
P(A)+P(A)=1
P(AB)=P(A)+P(B)P(AB)
P(AB)=0P(AB)=P(A)+P(B)
P(AB)=P(B)P(AB)
P(AB)=P(A)P(B)
P(BA)=P(B)P(AB)+P(B)P(AB)P(B)P(AB)
P(BiA)=P(B1)P(AB1)+P(B2)P(AB2)+P(B3)P(AB3)P(Bi)P(ABi)

Distributions & Vars

E(X)=xP(X=x)
E(X)=np
Var(X)=np(1p)
z=σxμ
σ2=ni=1kfi(xiμ)2=ni=1kfixi2μ2
σ=ni=1kfi(xiμ)2
E(aX+b)=aE(X)+b
Var(aX+b)=a2Var(X)
E(X)=−∞xf(x)dx
Var(X)=E(Xμ)2
Var(X)=E(X2)[E(X)]2
Var(X)=(xμ)2P(X=x)
Var(X)=x2P(X=x)μ2
Var(X)=−∞(xμ)2f(x)dx
Var(X)=−∞x2f(x)dxμ2

Differentiation

f(x)=xnf(x)=nxn−1
f(x)=sinxf(x)=cosx
f(x)=cosxf(x)=sinx
f(x)=exf(x)=ex
f(x)=lnxf(x)=x1
dxdy=dudy×dxdu
y=uvdxdy=udxdv+vdxdu
y=vudxdy=v2vdxduudxdv
a=dtdv=dt2d2s
f(x)=h→0lim(hf(x+h)f(x))
f(x)=tanxf(x)=sec2x
f(x)=secxf(x)=secxtanx
f(x)=cosecxf(x)=cosecxcotx
f(x)=cotxf(x)=cosec2x
f(x)=axf(x)=axlna
f(x)=logaxf(x)=xlna1
f(x)=arcsinxf(x)=1x21
f(x)=arccosxf(x)=1x21
f(x)=arctanxf(x)=1+x21

Integration

xndx=n+1xn+1+C,n=−1
A=abydx
distance =t1t2v(t)dt
displacement =t1t2v(t)dt
x1dx=lnx+C
sinxdx=cosx+C
cosxdx=sinx+C
exdx=ex+C
A=abydx
axdx=lnaax+C
a2+x2dx=a1arctan(ax)+C
a2x2dx=arcsin(ax)+C,x<a
udxdvdx=uvvdxdudx or udv=uvvdu
A=abxdy
V=πaby2dx or V=πabx2dy

Differential Equations

yn+1=yn+hf(xn,yn),xn+1=xn+h
μ(x)=eP(x)dx

Maclaurin Series

f(x)=f(0)+xf(0)+2!x2f′′(0)+
ex=1+x+2!x2+
ln(1+x)=x2x2+3x3
sinx=x3!x3+5!x5
cosx=12!x2+4!x4
arctanx=x3x3+5x5