Watch comprehensive video reviews for most units, designed for final exam preparation. Each video includes integrated problems you can solve alongside detailed solutions.
Not your average video:
Interactive Problems: Solve problems alongside the video with step-by-step guidance and detailed solutions.
Exam Preparation: Complete unit reviews designed for final exam preparation with all key concepts covered systematically.
Expert Teaching: High-quality instruction from Perplex co-founder James Mullen with clear explanations, worked examples, and exam tips.
Not your average video:
Interactive Problems: Solve problems alongside the video with step-by-step guidance and detailed solutions.
Exam Preparation: Complete unit reviews designed for final exam preparation with all key concepts covered systematically.
Expert Teaching: High-quality instruction from Perplex co-founder James Mullen with clear explanations, worked examples, and exam tips.
Vectors
Watch comprehensive video reviews for Vectors, designed for final exam preparation. Each video includes integrated problems you can solve alongside detailed solutions.
Not your average video:
Interactive Problems: Solve problems alongside the video with step-by-step guidance and detailed solutions.
Exam Preparation: Complete unit reviews designed for final exam preparation with all key concepts covered systematically.
Expert Teaching: High-quality instruction from Perplex co-founder James Mullen with clear explanations, worked examples, and exam tips.
Not your average video:
Interactive Problems: Solve problems alongside the video with step-by-step guidance and detailed solutions.
Exam Preparation: Complete unit reviews designed for final exam preparation with all key concepts covered systematically.
Expert Teaching: High-quality instruction from Perplex co-founder James Mullen with clear explanations, worked examples, and exam tips.
The video will automatically pause when it reaches a problem.
AHL 3.14
In kinematics (the mathematical description of motion), 3D motion can be modeled by a vector line, often expressed with the parameter representing time, t.
Specifically, the direction vector b represents the velocity of an object, indicating both its direction and magnitude of movement. The magnitude of this vector, ∣b∣, is the object's speed—the rate at which it moves, irrespective of direction.
AHL 3.14
In kinematics (the mathematical description of motion), 3D motion can be modeled by a vector line, often expressed with the parameter representing time, t.
Specifically, the direction vector b represents the velocity of an object, indicating both its direction and magnitude of movement. The magnitude of this vector, ∣b∣, is the object's speed—the rate at which it moves, irrespective of direction.