Content
Increasing and decreasing intervals, stationary points (maxima and minima), and optimisation
No exercises available for this concept.
Stationary points are often local extrema.
If f′(a)=0, f is decreasing to the left of a (f′(x)<0), and f is increasing to the right of a (f′(x)>0), then (a,f(a)) is a local minimum.
If f′(a)=0, f is increasing to the left of a (f′(x)<0), and f is decreasing to the right of a (f′(x)>0), then (a,f(a)) is a local maximum.
Powered by Desmos
Optimisation problems require you to find a minimum or maximum value by producing a function f(x), taking its derivative, solving f′(x)=0, and confirming which stationary point(s) are minima or maxima.