Watch comprehensive video reviews for most units, designed for final exam preparation. Each video includes integrated problems you can solve alongside detailed solutions.
Not your average video:
Interactive Problems: Solve problems alongside the video with step-by-step guidance and detailed solutions.
Exam Preparation: Complete unit reviews designed for final exam preparation with all key concepts covered systematically.
Expert Teaching: High-quality instruction from Perplex co-founder James Mullen with clear explanations, worked examples, and exam tips.
Not your average video:
Interactive Problems: Solve problems alongside the video with step-by-step guidance and detailed solutions.
Exam Preparation: Complete unit reviews designed for final exam preparation with all key concepts covered systematically.
Expert Teaching: High-quality instruction from Perplex co-founder James Mullen with clear explanations, worked examples, and exam tips.
Integration
Watch comprehensive video reviews for Integration, designed for final exam preparation. Each video includes integrated problems you can solve alongside detailed solutions.
Not your average video:
Interactive Problems: Solve problems alongside the video with step-by-step guidance and detailed solutions.
Exam Preparation: Complete unit reviews designed for final exam preparation with all key concepts covered systematically.
Expert Teaching: High-quality instruction from Perplex co-founder James Mullen with clear explanations, worked examples, and exam tips.
Not your average video:
Interactive Problems: Solve problems alongside the video with step-by-step guidance and detailed solutions.
Exam Preparation: Complete unit reviews designed for final exam preparation with all key concepts covered systematically.
Expert Teaching: High-quality instruction from Perplex co-founder James Mullen with clear explanations, worked examples, and exam tips.
The video will automatically pause when it reaches a problem.
SL 5.10
When we make a substitution in a definite integral in the form
we need to remember that the bounds are from x=a to x=b:
We then have two choices:
Plug x=a and x=b into u to find the bounds in terms of u.
Plug u(x) back in and use the bounds a→b.
Example
Consider ∫13x2+12xdx. We notice 2x is the derivative of x2+1, so we let u=x2+1⇒dxdu=2x. Thus the integral becomes:
Now we have two choices:
Plug x=3 and x=1 into u=x2+1, giving u=10 and u=2. Then
Replace u with x2+1:
SL 5.10
When we make a substitution in a definite integral in the form
we need to remember that the bounds are from x=a to x=b:
We then have two choices:
Plug x=a and x=b into u to find the bounds in terms of u.
Plug u(x) back in and use the bounds a→b.
Example
Consider ∫13x2+12xdx. We notice 2x is the derivative of x2+1, so we let u=x2+1⇒dxdu=2x. Thus the integral becomes:
Now we have two choices:
Plug x=3 and x=1 into u=x2+1, giving u=10 and u=2. Then
Replace u with x2+1: